First Tied-Arch Bridge in Chicago

Presented by: Dr. Soliman Khudeira, P.E., S.E.

Chair of NAAAEA National Education Committee

Halsted Street Bridge

Presentation Outline

Project overview

Substructure details

Superstructure details

Construction sequencing

North Halsted Street Bridge

Project Overview

Location Map

North Halsted Street Bridge

Location Map

- Remove the existing bascule bridge
- Install new fixed bridge

Existing and New Bridge

Two travel lanes

No bike lanes

New Bridge

- Four travel lanes
- Two-way bike lanes
- Can accommodate future river walk
- Improved aesthetics of the area

Existing Bascule Bridge

Structurally deficientFunctionally obsolete

North Halsted Street Bridge

Factors Affecting the Selection of a <u>Bridge Type</u>

Factors Affecting the Selection of a Bridge Type

- Aesthetics
- Surrounding (Context Sensitive Design)
- The need for the infrastructure improvement to act as a focal point for revitalization of the area and to stimulate commerce
- Bridges provide opportunities to create landmarks/signature bridges can become enduring symbols for cities or neighborhoods.
- Structural constraints: span, redundancy, loading, soil conditions,
- Geometric constraints (hydraulics, horizontal and vertical required river clearance, adjacent buildings, under/above ground utilities, availability of adjacent land
- Budget
- Constructability

Bridge Type Study: Multi-Girder

Bridge Type Study: Multi-Girder with Center Pier

Bridge Type Study: Multi-Arch

ire: North Haisted Streat Bridge over North Branch Canal of

Aesthetic Bridge: Multi-Arch Bridge

Bridge Type Study: Through Truss

Through Truss

Bridge Type Study: Tied-Arch

Aesthetic Bridge: Tied-Arch

North Halsted Street Bridge

Arch Bridges

True Arch (or Thrust Arch) Bridges

- The arch is in compression
- The horizontal thrust is resisted by the abutments

True Arch Bridge (Thrust-arch Bridge)

Tied Arch Bridges

- The arch is in compression
- The horizontal thrust is resisted by the horizontal tie

Tied-arch Bridge

North Halsted Street Bridge

Substructure Details

North Halsted Street Tied-Arch Bridge

River Walk

North Halsted Street Bridge

Superstructure Details

3D STAAD ANALYSIS MODEL - Momments

MOMENT DIAGRAM UNDER FULL DL

The rib was selected to be parabolic shape, which minimizes bending moment in the rib (Rib moment is only 25% of the moment in a floor beam)

3D STAAD ANALYSIS MODEL - Defelction

DEFLECTION DIAGRAM UNDER HALF SPAN LIVE LOAD

1/2 of the span is deflected down and the other 1/2 is deflected upward

Redundancy - Definition:

A redundant structure can redistribute the forces to other members (upon failure of a member) without causing collapse of the entire structure. Three types of redundancy are provided:

- Internal Redundancy in the Tie tie using bolts (rather than weld)
- Load Path Redundancy Composite and continuous deck
- Structural Redundancy
 Hangers provide continuity for the tie

North Halsted Street Bridge - Composite

Composite System:

- Using shear studs: The tie, floor beams, and stringers are connected with the deck
- Allow the use of much shallower superstructure

Steel Detailing

Member Cambering

Construction of Lower Framing

> Floor Framing

Steel Detailing

Member Cambering

North Halsted Street Bridge - Tie

TIE

North Halsted Street Bridge – Arch (Rib)

Arch

North Halsted Street Bridge - Knuckle

KNUCKLE PARTIAL LONGITUDINAL SECTION

KNUCKLE

Due to the complicated stress distribution at this location, finite element analysis was performed

North Halsted Street Bridge - Hangers

Floor Framing

> Steel Detailing

Member Cambering

North Halsted Street Bridge - Cambering

ARCH FINAL PARABOLIC SHAPE UNDER FULL DEAD LOAD (DC+DW)

ARCH GEOMETRIES UNDER FULL DEAD LOAD

In order to achieve the theoretical design shape, all major forcecarrying-members are cambered

North Halsted Street Bridge - Cambering

ARCH CAMBER DIAGRAM FOR FABRICATION

Tie and hangers are made shorter. The arch is made higher

North Halsted Street Bridge - Cambering

SLANT-CUT FLOORBEAMS CONNECTED WITH ARCH FRAMES

Floorbeams are also cambered:

- 1) Conventional flexure upward camber
- 2) The two ends are cut in slant angle to anticipate the end rotation

ARCH FRAMES ARE FORCED TO BE CONNECTED WITH TOP STRUTS

FINAL GEOMETRY UNDER FULL DEAD LOAD

Construction Sequencing

Tied-Arch - Construction Methods

Tied-Arch Bridges - Two Construction methods:

- 1. ABC (Accelerated Bridge Construction)
- 2. Build-in-place

Erection Stages - Stage 5

Erection Stages - Stage 6

CABLE HANGER: FORCE TESTING

Construction Sequencing

Completed Bridge Photos

North Halsted Street Tied-Arch Bridge

North Halsted Street Tied-Arch Bridge

Owner:

Chicago Department of Transportation

Engineering Team:

Prime Consultant – **H.W. Lochner** Main Sub-consultant – **HBM Engineering** Peer Reviewer – **Parson Brinckerhoff**

Architectural Team:

Architect – **Muller & Muller** Lighting Architect – **Schuler Shook** Historic Documentation – **Johnson Lasky**

Construction Management:

Benesch

Contractor: Walsh Construction

Thank you